
FlexVC: Flexible Virtual Channel Management in
Low-Diameter Networks

Pablo Fuentes, Enrique Vallejo,
Ramón Beivide

University of Cantabria
Santander, Spain

Email: {fuentesp,vallejoe,beividej}
@unican.es

Cyriel Minkenberg
Rockley Photonics Inc

Email: cyriel.minkenberg
@rockleyphotonics.com

Mateo Valero
Barcelona Supercomputing Center & UPC

Barcelona, Spain
Email: mateo.valero@bsc.es

Abstract—Deadlock avoidance mechanisms for lossless low-
distance networks typically increase the order of virtual channel
(VC) index with each hop. This restricts the number of buffer
resources depending on the routing mechanism and limits per-
formance due to an inefficient use. Dynamic buffer organizations
increase implementation complexity and only provide small gains
in this context because a significant amount of buffering needs
to be allocated statically to avoid congestion.

We introduce FlexVC, a simple buffer management mechanism
which permits a more flexible use of VCs. It combines statically
partitioned buffers, opportunistic routing and a relaxed distance-
based deadlock avoidance policy. FlexVC mitigates Head-of-Line
blocking and reduces up to 50% the memory requirements.
Simulation results in a Dragonfly network show congestion reduc-
tion and up to 37.8% throughput improvement, outperforming
more complex dynamic approaches. FlexVC merges different
flows of traffic in the same buffers, which in some cases makes
more difficult to identify the traffic pattern in order to support
nonminimal adaptive routing. An alternative denoted FlexVC-
minCred improves congestion sensing for adaptive routing by
tracking separately packets routed minimally and nonminimally,
rising throughput up to 20.4% with 25% savings in buffer area.

Keywords-Buffer management, deadlock avoidance.

This is an earlier accepted version; a final version of this work will be published in the Proceedings of the 31st
IEEE International Parallel & Distributed Processing Symposium (IPDPS 2017). Copyright belongs to IEEE.

I. INTRODUCTION

Low-diameter networks present low average distance be-
tween nodes and permit to reduce latency, cost and en-
ergy consumption, while achieving high scalability. The most
widespread mechanism for deadlock avoidance in these net-
works relies on a fixed order in the use of virtual channels
(VCs). Günther [1] proposed a simple mechanism in which
packets follow VCs in an strictly increasing index order per
hop. This deadlock avoidance policy implies that supporting
long nonminimal network paths, such as those employed by
Valiant [2] or in-transit adaptive routing, requires a larger
number of resources compared to the base minimal routing.
Likewise, avoiding protocol deadlock or supporting multiple
QoS traffic classes multiplies the VC requirements (e.g.,
the Dragonfly network in Cray Cascade requires 8 VCs to
support nonminimal routing and avoid protocol deadlock [3]).
However, the deadlock avoidance mechanism prevents a free
use of these buffers by imposing a strict order with just one
valid VC per hop.

For practical reasons it is interesting to decouple the number
and usage of VCs from deadlock avoidance. Depending on the
traffic pattern, a fixed order policy can use only a subset of the
available VCs, potentially increasing Head-of-Line Blocking
(HoLB) and decreasing performance. A large number of VCs
reduces HoLB, but increases the area required by buffers and
the complexity of the router implementation (mainly muxers,
demuxers, allocator and flow control logic). This problem
exacerbates when deeper buffers are employed to support
bursts of traffic and properly detect congestion when adaptive
routing is used.

Shared buffer architectures, such as DAMQ buffers [4], can
reduce per-port buffering while preserving performance. How-
ever, shared buffers are complex, increasing the access delay
and the area and power required for a given buffering capacity
per port. Moreover, in low-diameter direct networks DAMQ
memories require a significant private buffer reservation to
avoid deadlock and congestion, which in practice rules out
their performance improvements, as studied in Section VI-C.
Additionally, in most cases a complete order in the VC usage
is not actually required to guarantee deadlock freedom. In fact,
the VC employed by a given packet only needs to guarantee
that there exists a safe, ascending path to its destination.

Based on these observations, we introduce a buffer manage-
ment mechanism denoted FlexVC which removes the strict VC
order proposed for deadlock avoidance, allowing to use the
maximum amount of VCs per hop of the path. FlexVC com-
bines statically partitioned buffers, a relaxed distance-based
deadlock avoidance policy and opportunistic routing. FlexVC
permits packet forwarding to several VCs, providing similar
or better performance than shared buffers. Additionally, by
relegating higher-index VCs to latter steps in the path, FlexVC
is immune to congestion caused by excessive occupancy of a
single buffer. Moreover, FlexVC can be implemented with less
physical buffers than hops in the longest allowed nonminimal
path, with buffer reductions up to 50%. Besides simplicity, the
main benefits of FlexVC compared to a base design include
reduced HoLB by using more VCs from the input ports; a
lower amount of VCs required in the network, even below
the longest path length; increased effective buffering per hop,
better supporting bursts of traffic; and partially relaxed path

restrictions, increasing routing adaptivity.
Low-diameter networks typically require nonminimal adap-

tive routing, with the misrouting decision based on a conges-
tion estimation. We observe that using a fixed VC per path hop
aids congestion sensing. This effect is lost with FlexVC, since
traffic from different hops can share the same VC. FlexVC-
minCred circumvents this by accounting separately the credits
corresponding to minimally- and nonminimally-routed pack-
ets. This mechanism restores the ability to identify adversarial
traffic patterns and supports efficient adaptive routing.

In summary, the main contributions of this paper are:
• We introduce FlexVC, a simple buffer management mech-

anism which provides maximum flexibility in buffer use
with buffer reductions up to 50%.

• We evaluate the performance of FlexVC. Results from our
simulations show throughput increases using FlexVC up
to 37.8% compared to the base case, better handling of
traffic bursts and performance improvements compared to
DAMQ with a much simpler buffer organization.

• We identify a limitation in congestion sensing caused by
merging different flows of traffic in the same buffers,
and propose an alternative mechanism denoted FlexVC-
minCred. This mechanism identifies adversarial traffic
properly, improving throughput up to 20% in source-
adaptive routing schemes using 25% less buffer area.

The rest of this paper is organized as follows: Section II
introduces the background on the topic. Section III presents
FlexVC. Section IV introduces the evaluation framework,
Section V presents the main results, Section VI discusses
implementation details and Section VII considers related work.
Finally, Section VIII concludes.

II. BACKGROUND

This section introduces the relevant background relative to
topologies, routing, distance-based deadlock avoidance and
buffer management.

Topologies Multiple highly-scalable networks with diameter
2 or 3 have been proposed based on high-radix routers.
Some examples are 2D or 3D Flattened-Butterflies (FB, [5],
[6]); diameter-3 Dragonflies (DF, [7]) or Projective Networks
(PN, [8]); and diameter-2 Slim Flies (SF, [9]), Orthogonal Fat
Trees (OFT, [10]) and demi-PN [8].

Oblivious routing Multiple routing protocols have been
designed for these networks. Minimal routing (MIN) requires
at most as much hops as the diameter of each network. MIN
is suitable for traffic patterns with uniform (UN) distribution
of destinations, achieving optimal latency. Under adversarial
(ADV) traffic patterns using MIN some links receive most of
the traffic, leading to high congestion and poor performance.
Adversarial patterns of many of these networks are studied
in [7], [11]. Valiant routing (VAL, [2]) avoids in-network
congestion caused by adversarial patterns by randomizing
traffic: packets are sent first minimally to a random router, and
then minimally to the final destination. VAL makes the traffic
uniform and balances it over the network links. However, this

DS Minimal
path

Valiant
path

Valiant router

Fig. 1: Distance-based deadlock avoidance with MIN/VAL routing
in a diameter-2 Slim Fly network with 4 VCs. Traffic is sent from
source S to destination D. In each intermediate router (square box)
the only allowed buffer is shaded.

doubles the longest network path and, therefore, halves the
maximum throughput.

Adaptive routing To avoid the performance disparity be-
tween MIN and VAL with different traffic patterns, nonmin-
imal adaptive routing selects the most appropriate one by
sensing network congestion. UGAL [12] selects at injection
between a minimal and a Valiant path, based on their re-
spective buffer occupancy. However, congestion often occurs
in links not directly connected to the source router, what
complicates sensing it. This occurs for example in Dragonflies,
in which nodes are arranged in groups, with groups connected
using global links. Global links are more prone to congestion,
but the global link to be used by a packet is often connected
to a neighbor router in the source group. In-transit adaptive
routing mechanisms re-evaluate the routing decision in some
hops of the path. Progressive Adaptive Routing (PAR, [13])
may switch from MIN to VAL after a minimal hop.

PB and source adaptive routing Piggyback (PB [13])
is a nonminimal source adaptive routing mechanism which
indirectly senses congestion of remote links. Each router
detects congested global ports and distributes this information
to its neighbor routers. In particular, each router measures the
occupancy (credits) of its global ports, and sets as ‘saturated’
those links that present 50% more occupancy than the average,
sharing these bits with its neighbours. At injection time, each
router selects a path based on both the ‘saturation’ status of
the global link in the minimal path, and a local comparison of
credits. Global ports may be set as ‘saturated’ by comparing
the overall occupancy of all the VCs, or a single one. As
studied in Section V-C, using a single VC is more efficient,
since it implicitly identifies the traffic pattern in the network.

Distance-based deadlock avoidance We denote ci the VC
with index i. Distance-based deadlock avoidance assigns a
VC ci for each hop i in the path. This mechanism is clearly
deadlock-free: the last VC never blocks since packets are about
to be consumed, and the others may depend only on higher-
index VCs, without cyclic dependencies. This policy requires
in general as many VCs as hops in the longest allowed path.
Figure 1 presents an example of a generic diameter-2 network
(such as SF or 2D FB). To support VAL routing with path
length 4, 4 VCs are required. The VC used in each hop is
fixed, which means MIN does not exploit the availability of 4
VCs, since MIN paths have length 2.

Request-reply traffic and protocol deadlock The amount
of required buffers increases to avoid protocol deadlock [14].

The typical solution employs separate virtual networks, as in
Cascade [3]. Destination nodes receive requests and generate
replies back to the original sources. Overall paths can be
considered as the concatenation of the request and the reply
paths in both virtual networks. Such organization provides
isolation between different classes of messages but effectively
doubles buffering requirements, since for each original VC
now are required a request VC and a reply VC.

Routing or link-type restrictions In some networks, the
number of VCs required for distance-based deadlock avoid-
ance is lower than the maximum path length. This occurs
when network links can be classified into different disjoint
sets (e.g. X/Y/Z links in a 3D FB; local/global links in a DF;
upward/downward links in an OFT), which are traversed in
a fixed order (e.g. DOR routing in FB; l-g-l MIN paths in
DF; up/down routing in OFT). In these cases, the required
count of VCs in each set only depends on the amount of hops
in the given set. In some cases (such as the FB), this policy
trades off path diversity for VC requirements: with distance-
based deadlock avoidance, adaptive routing is supported in
the FB, but requires more resources. In other cases (such as
the DF or OFT) this requirement is imposed by the nature
of the topology. In either case, a given VC (type and index)
is assigned to each hop in the path, and their order needs to
be preserved to avoid deadlock. We denote such sequence a
reference path.

The example of a diameter-3 DF with complete graphs in
the local and global topologies is considered next. Minimal
paths comprise a local hop in the source group, a global hop
which gets to the destination group, and a local hop at the
destination group. This is denoted l0−g1− l2 to indicate both
the type of link and VC index used in the reference path1.
Shorter paths such as l0 − g1 or g1 − l2 are possible when
missing hops are not required to reach the destination, but
different order of hops such as l0 − l2 − g1 or g1 − l0 − l2 is
never allowed nor required. Therefore, for minimal routing it
is enough to implement 2 VCs in input local ports (for hops
0 and 2) and only 1 buffer in global ports (for hop 1). We
denote such VC arrangement 2/1. Similarly, VAL requires 4/2
VCs2 (l0 − g1 − l2 − l3 − g4 − l5, note the two subpaths
are separated) and PAR requires an additional local VC, 5/2
VCs (l0 − l1 − g2 − l3 − l4 − g5 − l6). Avoiding
protocol deadlock doubles these requirements to 4/2, 8/4 and
10/4 respectively.

Buffer organization and cost
Different implementations can be employed in the router

buffers, depending on the buffer allocation management. Stat-
ically partitioned buffers assign a fixed amount of mem-
ory per VC, whereas dynamically allocated buffers (such
as Dynamically Allocated Multi-Queues, DAMQs) share a

1VC indices in each type of port (e.g. local ports l0 and l2) are not
assigned consecutively values to simplify the explanation. The amount of
VCs is determined by the amount of different indices, not the highest value.

2Note that we refer to ‘real’ Valiant [2], denoted Valiant Any in [15]
and Valiant-node in [16]. Restricted variants of Valiant in the Dragonfly can
employ 3/2 VCs [7] but present pathological performance problems [17].

(a) Statically partitioned buffers.

(b) Dynamically Allocated Multi-Queue (DAMQ).

(c) DAMQ with per-VC reserved buffer.

Fig. 2: Logical organization of static vs dynamic buffer management
with three VCs. In DAMQs a buffer pool is shared between VCs.
Head and tail pointers are used to access data from each VC, and
allocate free memory (black pointers).

buffer pool between VCs. A constraint of current ASICs is
to use limited buffers [18]. DAMQs share a single memory
buffer among all the VCs within a port, for example using
linked lists. Memory is allocated dynamically to each buffer
on demand. Intermediate approaches employ a shared pool
together with per-VC private buffering. Figure 2 shows the
logical organization of these implementations. Shared buffers
use is widespread to improve the utilization of the available
space, for example in the SCOC design [19] and the Tianhe-2
network switches [20].

Using multiple VCs per port imposes a significant cost both
in terms of area and power, and increases the router control
logic. Depending on which router stage constitutes the critical
path, this has an impact on router frequency of operation.

III. FlexVC MECHANISM

This section presents the base FlexVC mechanism, applied
to a Virtual Cut-Through (VCT) network without dependen-
cies between different message classes, routing-induced path
restrictions or topology-induced link-type restrictions; these
are considered in subsections III-B and III-C. The impact of
FlexVC on congestion detection mechanisms for nonminimal
adaptive routing is considered in subsection III-D.

A. Base FlexVC
The key idea behind FlexVC is that, in order to guarantee

deadlock freedom, packets do not need to follow a strictly
increasing order of VCs {c0, c1, c2, · · ·}; it is only required
that such increasing path exists for every hop in a packet
path, starting from the currently used VC (i.e. the index of
the input buffer that contains the packet) upwards to the final
destination. Such path is denoted escape path [21]. With this
idea, the only restriction on the VC index to be used when a
router forwards a packet by a given output port is related to
whether the subsequent increasing path exists or not.

Using the notation in [14], we denote the set of channels
by C and the set of network nodes by N . We consider an
incremental routing function R : C ×N 7→ C which specifies
an output VC, ck, for each path determined by the routing
protocol. A routing protocol R based on FlexVC specifies the
highest VC, ck, allowed in each hop. The router allocator
and forwarding unit employ a certain VC selection function
to select any VC, cj , with available credits in the output
port, such that 0 ≤ j ≤ k. Different VC selection functions
could be highest-index, lowest-index, JSQ (Join the Shortest
Queue) or random. The routing protocol R considers safe and
opportunistic hops.

Definition 1: Safe hops require that from the input channel
cj0 there exists a safe path {cj0, cj1, · · · , cjn} to the destina-
tion with increasing VC index cjk > cjl ∀k > l ≥ 0.

Definition 2: Opportunistic hops require that regardless
of the input channel cj0 there exists a safe path
{cj1, cj2, · · · , cjn} from the next buffer cj1 to the destination
node, with increasing VC index cjk > cjl ∀k > l > 0, and
with cj1 ≥ cj0. Opportunistic paths contain safe hops and one
or more opportunistic hops, each of them with their associated
safe path as escape.

Every connected routing protocol R must provide at least
one safe path for each possible destination to guarantee
deadlock-freedom. Opportunistic paths can be used as long
as the next hop buffers contain enough space for the complete
packet; otherwise, packets revert to the corresponding safe
path as an escape path. This routing restriction, which avoids
the appearance of dependencies in the extended resource
dependency graph [21], can be applied to wormhole networks
as long as input buffers can hold a complete packet. Several
opportunistic hops can appear in the same path, as long as
there exists a safe escape path from each of them. Note that,
as shown in Figure 3, the longest allowed safe path is a design
parameter and can vary. Hence, routers with more VCs can be
employed to reduce HoLB and to implement more safe paths.

For each safe hop, the VC index determined by R equals
the maximum amount of VCs minus the remaining hops to the
destination router. For each opportunistic hop, the VC index
determined by R equals the index determined by the shortest
safe escape path associated to the opportunistic hop.

Theorem 1: A routing protocol R using FlexVC is
deadlock-free with as many VCs as the longest safe path
allowed in the network.
As a sketch of the proof, note that Definition 1 requires as
many VCs as the path length to consider such path as safe.
With consumption assumption [22], safe paths are deadlock
free by induction on the VC indices. Opportunistic paths are
deadlock-free by [21] since they necessarily have an escape
safe path for each opportunistic hop. Note that, as opposed to
Duato’s mechanism [21], FlexVC does not require dedicated
resources for the escape path; instead, VCs in the safe path can
also be used for opportunistic hops as long as an increasing
VC index order can be guaranteed for the safe path, reducing
the minimum number of buffers required. Note also that more
VCs than the longest path can be exploited to avoid HoLB;

DS Minimal
path

Valiant
path

Valiant router

(a) Safe MIN/VAL paths using 4 VCs.

S D

Minimal path
Valiant path
Valiant escape path
In-transit change
to a Valiant path

Valiant router

Valiant
router

(b) Opportunistic Valiant and in-transit adaptive paths with 3 VCs.

Fig. 3: Sample FlexVC usage in a generic diameter-2 network.
Allowed VCs in each hop are shaded.

TABLE I: Allowed paths using FlexVC in a generic diameter-2
network.

VCs
Routing 2 3 4 5
MIN safe safe safe safe
VAL X opport. safe safe
PAR X opport. opport. safe

we denote them additional VCs.
Figure 3 presents two examples of paths allowed by FlexVC

in a generic diameter-2 network (such as a SF or an adaptive
FB), from a source node S to the destination D. The situation
in Figure 3a employs routers with 4 VCs per input port. With
this amount of VCs, minimal and Valiant paths (of length
2 and 4 respectively) are safe paths by Theorem 1, so the
amount of allowed VCs per hop only depends on the remaining
distance to the destination. Note that, in most hops, FlexVC
allows to select between several VCs, compared to the base
deadlock avoidance protocol which specifies a single one. This
is particularly interesting to absorb transient bursts of traffic,
since the effective buffer space in each hop increases without
requiring DAMQ buffers.

The example in Figure 3b employs routers with 3 VCs per
input port. Minimal paths are safe since they only require 2
VCs because the network has diameter 2, but Valiant paths are
not safe with less than 4 VCs. However, opportunistic Valiant
paths can be implemented, since for each opportunistic hop
of the path there exists a safe escape path. The first two hops
of the Valiant path are opportunistic; the associated escape
path for the second hop is depicted, and the one for the

first hop is the MIN path. Additionally, changing from MIN
to VAL in PAR [13] is also allowed with two opportunistic
hops in the path: the escape path for the first hop of the
Valiant path is the continuation of the minimal path; the next
hop is also opportunistic, with its escape path omitted in the
figure for simplicity. Note that VAL and PAR would not be
deadlock-free with the 2 VCs required for MIN, since their
opportunistic hops would not have an associated safe path.
Table I summarizes the paths allowed using different amount
of VCs in a generic diameter-2 network.

B. FlexVC considering protocol deadlock
Section II introduces the use of request and reply VCs to

avoid protocol deadlock. FlexVC concatenates the request and
reply paths in a single unified sequence in order to increase
flexibility in buffer management, and considers the pool of
VCs as a unified set rather than distinct virtual networks. The
highest VC to be used differs for request and reply messages.
Request packets can only employ their associated request VCs
in the manner presented in Section III-A. However, reply
packets can employ both reply and request VCs, increasing
flexibility and further reducing HoLB.

Theorem 2: FlexVC is deadlock-free in presence of request-
reply traffic.
The proof is obvious since both request and reply paths are
deadlock free by considering Theorem 1 in the sub-sequence
of request and reply VCs. Additionally, reply messages can
employ request VCs since there exists a safe path to the
destination considering the complete sequence of VCs.

Moreover, FlexVC can be further exploited to reduce the
number of VCs required to support long paths. The set of reply
VCs only needs to be dimensioned for safe minimal paths
as of Theorem 1, since opportunistic reply hops following
nonminimal paths can leverage lower-index request VCs.
Therefore, increasing the amount of VCs can be employed
to either support longer safe paths (e.g., 4+4 for safe VAL
paths in a diameter-2 network) or as additional VCs at the
start of the request sequence, which reduces HoLB in both
subpaths that can use them. Both alternatives are evaluated in
Section V-B.

Table II summarizes an example for a diameter-2 network.
Distance-based deadlock avoidance requires 5+5=10 VCs to
support safe VAL and PAR paths in both request and reply
virtual networks. FlexVC as presented in Figure 3b supports
the same paths using only 3+3=6 VCs. However, if reply
VCs are dimensioned to support MIN routing only (leveraging
request VCs for opportunistic VAL and PAR paths) the same
set of paths would be supported with only 3+2=5 VCs,
implying a reduction of 50% compared to the baseline. This
case is also illustrated with the example in Figure 4, in which
both minimal and Valiant paths are depicted in a network with
3 + 2 = 5 VCs.

C. Networks with routing or link-type restrictions
In networks with routing or topology-induced path re-

strictions, FlexVC needs to consider the order of link types
followed in reference paths.

TABLE II: Allowed paths using FlexVC considering protocol dead-
lock in a generic diameter-2 network.

VCs (Request + Reply = overall)
Routing 2+2=4 3+2=5 3+3=6 4+4=8 5+5=10
MIN safe safe safe safe safe
VAL X opport. opport. safe safe
PAR X opport. opport. opport. safe

Minimal
request

DS

Valiant router

V
aliant

reply

Minimal
reply

Fig. 4: Example protocol deadlock avoidance in a generic diameter-2
network with 3 + 2 = 5 VCs using FlexVC.

TABLE III: Allowed paths using FlexVC in a diameter-3 Dragonfly
network following local/global links in topology-determined order.

Dragonfly VCs (Local/Global)
Routing 2/1 3/1 or 2/2 3/2 4/2 5/2
MIN safe safe safe safe safe
VAL X X opport. safe safe
PAR X X opport. opport. safe

FlexVC considers reference paths with different types of
hops. As in Section III-A, FlexVC provides the highest VC
(of the given type) to be used in each hop and can reduce
the amount of VCs required. In this case, escape paths also
need to consider the specific sequence of hops in the reference
paths, not only the distance to the destination. Consider as
an example a Dragonfly network, introduced in Section II.
While 2/1 VCs support MIN paths l0 − g1 − l2, adding a
single VC to either global ports (2/2 VCs) or local ports (3/1
VCs) does not support opportunistic VAL: In the first case,
there is no safe path after the first opportunistic local hop l0
(there are not two additional local hops for MIN routing to the
destination) and in the second there is no possible safe escape
path after the first opportunistic global hop. Instead, one VC
needs to be added to both local and global ports (reaching
3/2) to support VAL and PAR opportunistic paths, using the
sequence l0 − g1 − l2 − g3 − l4. One and two additional local
VCs are required respectively to support VAL and PAR safe
paths, reaching the reference paths introduced in Section II.
This is summarized in Table III. Additional VCs of any given
type are inserted at the start of the reference path.

Protocol deadlock avoidance requires in each sub-path a
longer reference path which considers link types. As in the
base case, the reply sub-sequence can be dimensioned for MIN
routing, using opportunistic nonminimal paths that exploit
the request subsequence of VCs. Results are summarized in
Table IV, with 5/3 overall VCs required for opportunistic VAL
and PAR paths in request and reply paths.

TABLE IV: Allowed paths using FlexVC considering protocol dead-
lock in a diameter-3 Dragonfly network. Note that 4/2 VCs allows
for VAL and PAR opportunistic routing in the reply path, but not for
requests since there are no safe escape paths using request VCs.

VCs (Request + Reply = overall)
2× (2/1) 3/2 + 2/1 2× (4/2) 2× (5/2)

Routing = 4/2 = 5/3 = 8/4 = 10/4
MIN safe safe safe safe
VAL X / opport. opport. safe safe
PAR X / opport. opport. opport. safe

D. FlexVC-minCred and congestion sensing for nonminimal
adaptive routing

The misrouting decision for nonminimal adaptive routing
relies on an estimation of network congestion, typically based
on a direct or indirect measurement of the buffer occupancy
of the minimal and some nonminimal path [12], [13].

The base use of a fixed VC per path hop aids such
congestion sensing. Consider the particular case of a Dragonfly
network with traditional buffer management. Under ADV
traffic, part of the traffic is sent minimally using global links
that connect directly to destination groups. Such traffic only
employs the first VC V C0 in the path according to Figure 1.
The remaining global links forward Valiant traffic, and employ
two global VCs in a balanced way. Congestion sensing can be
performed by measuring buffer occupancy, either a single VC
V C0, or overall occupancy per-port. Adaptive routing attempts
to balance the total traffic load uniformly across all the global
links, but buffer occupancy differs from links used for minimal
(only V C0 used) or nonminimal routing (both V C0 and V C1).
Per-VC sensing may discern global links used for minimal and
nonminimal routing, because their occupation of V C0 differs
even when the link load is balanced. Per-port sensing is less
efficient as it cannot discern both types of traffic, and thus
does not implicitly help identify the traffic pattern.

FlexVC allows that traffic routed minimally and nonmini-
mally share the same buffers. For this reason, per-VC sensing
efficiency decreases with FlexVC under ADV; an evaluation
is presented in Section V-C. FlexVC-minCred is a variant
designed to regain the traffic pattern identification capabilities.
FlexVC-minCred extends the base FlexVC accounting sepa-
rately credits corresponding to minimally- and nonminimally-
routed packets. Since packet headers already contained the
type of routing employed and a type of credit accounting
was already required, the implementation cost only requires
an additional flag per credit packet to indicate the type of
routing and an additional credit counter per output port. Global
ports are set as ‘saturated’ (in PB) and buffer occupancy is
compared according to the MIN credits only, either per-VC or
per-port. The evaluation in Section V-C shows that per-port
sensing obtains the best performance because it accounts for
all minimally-routed packets.

IV. EVALUATION INFRASTRUCTURE

The proposed mechanisms have been evaluated in a Dragon-
fly network, which presents topology-induced path restrictions;

TABLE V: Simulation parameters.

Parameter Value
Router size 31 ports (h=8 global, p=8 injection, 15 local)
Group size 16 routers, 128 computing nodes
System size 129 groups, 2,064 routers,

16,512 computing nodes
Latency 10/100 cycles (local/global links)

5 cycles (router pipeline)
Virtual 2/1 (local/global input ports) for MIN,
Channels 4/2 for VAL & PB, 3 injection buffers
Buffer size 32 (local input buffer per VC, output buffer),
(phits) 256 (injection and global input buffer per VC)
DAMQ organization 25% shared, 75% private per-VC
VC selection policy JSQ (in FlexVC)
Packet size 8 phits
Router speedup 2× frequency speedup
Switching Virtual Cut-Through
Allocator iterative input-first separable allocator
PB routing Threshold T = 3, [13]

request-reply traffic has been also considered. The network
has been modelled using the cycle-accurate FOGSim network
simulator [23], which operates at phit level. Combined input-
output buffered routers have been modelled with separate
consumption ports for requests and replies. The simulated
network comprises more than 2,000 routers and 16,000 nodes.
Unless otherwise noted, simulations employ the parameters in
Table V. FlexVC results are compared to a baseline statically-
partitioned mechanism and a DAMQ implementation with
75% of the buffer private; the selection of this DAMQ configu-
ration is discussed in Section VI-C. Router speedup (frequency
speedup 2×) refers to the increased internal frequency at
which router crossbars operate, compared to the frequency
at which the network links operate. Frequency speedup is
typically employed to compensate the effect of suboptimal al-
location mechanisms [14]. Results without frequency speedup
are presented in Section VI-D. In all tests we average latency
and throughput in steady state within 5 simulations, for a
period of 60,000 cycles after a sufficient warm-up.

A. Routing mechanisms and buffering

The oblivious and source adaptive mechanisms presented
in Section II are modeled. Oblivious mechanisms (MIN and
VAL) employ the minimum number of VCs required (2/1 and
4/2, respectively). The source-adaptive mechanism PB also
requires 4/2 VCs to ensure deadlock freedom. Two variants
for congestion sensing are considered: in PB per-port global
ports are set as ‘saturated’ based on the sum of the remaining
credits of all the VCs in the port; by contrast, PB per-VC
considers separately the credits in the first VC of each global
port. With request-reply traffic, the first VC used in each
subpath is considered. In such case, PB per-VC distributes
the saturation information of both VCs, which doubles the
computation and communication overhead from PB per-port.
In all cases, the amount of VCs is doubled for request-reply
traffic. FlexVC variants exploiting a different amount of VCs

are also modeled, and indicated explicitly. DAMQ variants
employ the same overall amount of memory as in each base
case, with 25% of the buffer shared and the remaining 75%
private, distributed among all the VCs.

B. Traffic patterns

Three synthetic traffic patterns have been considered. Two
of them employ a Bernoulli process which generates packets
according to a certain injection probability, with a randomly
selected destination. Under uniform (UN) traffic, the destina-
tion of each packet is any possible node in the network, except
the source; under adversarial (ADV) traffic, the destination of
each packet is one random node in the following group. ADV
traffic requires VAL routing since MIN saturates the single
inter-group link in this topology.

The third pattern BURSTY-UN is a burst traffic model
that employs a Markov chain with two different states
(ON/OFF) [24]. Such model has been found to accurately
represent Data Center traffic [25]. In the ON state, nodes
generate traffic according to a Bernoulli process with UN
destination selection. The destination is unchanged during each
ON burst. In the OFF state, nodes do not generate traffic.
Transition probabilities from ON to OFF and OFF to ON can
be configured to provide different average load and average
burst length; we employ an average burst length of 5 packets.

Reactive variants of the previous patterns implement two
different types of packets: requests and replies, as in [3]. Nodes
generate requests following one of the previous traffic patterns,
and insert a reply upon the arrival of a request. The destination
of a reply is always the source node of the received request.

V. RESULTS

This section presents results of the evaluations, comparing
the performance of FlexVC against both a base implementation
with statically-partitioned buffers and DAMQ memories; both
oblivious and adaptive routing mechanisms are considered, as
well as the use of request-reply traffic.

A. Oblivious routing

Figure 5 shows results with oblivious routing, MIN in the
case of uniform patterns (UN, BURSTY-UN) and VAL for
adversarial traffic (ADV). 2/1 VCs are employed for MIN and
4/2 for VAL. FlexVC results with 4/2 VCs with MIN and 8/4
VCs are also presented; note that the base mechanisms cannot
exploit additional VCs for deadlock avoidance restrictions.
The amount of memory per VC is constant, as presented in
Table V. Under UN traffic in 5a, latency curves with MIN
are similar before the saturation point. Throughput reaches
0.7 phits/node/cycle for both baseline and DAMQ. FlexVC
increases throughput up to 0.75 thanks to HoLB mitigation.
Doubling the number of VCs to 4/2 (i.e. the amount of
resources required for VAL) further increases throughput to
0.85. A set of 8/4 VCs with FlexVC allows to improve that
figure up to 0.9 phits/node/cycle.

The saturation throughput with BURSTY-UN in Figure 5b
decreases from UN, ranging from 0.47 to 0.70, again with

the best performance for FlexVC. Interestingly, in this case
average latency curves differ well below the saturation point.
For example, for a load of 0.4 phits/node/cycle, DAMQ
reduces average latency in 4,7% over baseline, while FlexVC
reduces 10,1%, 19,3% and 21,7% with 2/1, 4/2 and 8/4 VCs
respectively.

Finally, under ADV traffic with VAL routing the network
links represent a significant bottleneck. Nevertheless, FlexVC
represents an improvement over the baseline and DAMQ
configurations in Figure 5c. Doubling the number of VCs from
the minimum set of 4/2 VCs to 8/4 lets FlexVC achieve a
throughput of 0.49 phits/node/cycle in saturation, approaching
the theoretical limit for VAL routing. Latency-wise all imple-
mentations perform similarly.

Figure 6 portrays maximum throughput for constant buffer
sizes per port. We have considered four total buffer ca-
pacities: 64/256, 128/512, 192/768 and 256/1024 phits per
local/global port. Upper charts refer absolute throughput in
phits/node/cycle, whereas lower charts display the relative
increase over Baseline with the same total buffer capacity.

FlexVC is beneficial for all buffer sizes under all traffic pat-
terns, increasing throughput up to 12% with the same number
of VCs and up to 23% when a larger VC set is exploited
(with the same memory capacity per port as the baseline
configuration). The impact is higher with small buffers of
64/256 phits of total capacity per port, where the flexibility in
VC use allows to overcome temporary fill-ups at certain VCs.
Likewise, FlexVC has the highest impact under BURSTY-UN
because the traffic bursts are more prone to congesting isolated
VCs. Interestingly, in all the configurations it outperforms
the DAMQ implementation, which achieves a very modest
improvement over the baseline.

Conclusion: FlexVC improves throughput up to 12% with
the same amount of resources and 23% by exploiting more
buffers (typically already provisioned to support VAL routing),
in both cases outperforming DAMQ organizations. For a given
buffer size per port, FlexVC is similar to or more efficient
than DAMQ buffers, particularly when using multiple shallow
queues and UN traffic patterns.

B. Request-reply traffic

Figure 7 displays latency and throughput modeling request
and reply messages as described in Section IV-B. In this case,
the minimum number of VCs is 4/2 (2/1+2/1) for MIN and 8/4
for VAL. All latency curves are similar below the saturation
point; however, under UN the base implementations (MIN and
DAMQ) present congestion after reaching the saturation point.
The use of FlexVC with the same 4/2 VCs presents both higher
peak throughput (which grows from 0.70 to 0.75 in MIN) and
a less pronounced congestion effect. Throughput at maximum
load increases 24.6% from MIN and 17.9% from DAMQ.

The use of more VCs increases peak throughput and reduces
congestion. FlexVC with 6/4 VCs arranged in 4/3+2/1 virtually
removes congestion and reaches 0.85, which represents a
remarkable 51.8% increase over MIN. Other configurations
present intermediate results. It is noteworthy that throughput

140

160

180

200

220

240

260

280

300

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Baseline
DAMQ 75%

FlexVC 2/1VCs
FlexVC 4/2VCs
FlexVC 8/4VCs

0.40

0.50

0.60

0.70

0.80

0.90

 0.4 0.5 0.6 0.7 0.8 0.9 1A
cc

ep
te

d
lo

ad
 (

ph
its

/n
od

e/
cy

cl
e)

Offered load (phits/node/cycle)

(a) UN with MIN routing.

150

200

250

300

350

400

450

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered load (phits/node/cycle)

(b) BURSTY-UN with MIN routing.

260

280

300

320

340

360

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.30

0.35

0.40

0.45

0.50

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered load (phits/node/cycle)

(c) ADV with VAL routing.

Fig. 5: Latency and throughput under uniform (UN), uniform with bursts (BURSTY-UN) and adversarial traffic (ADV), with oblivious
routing: MIN for UN/BURSTY-UN and VAL for ADV.

Baseline DAMQ 75% FlexVC 2/1VCs FlexVC 4/2VCs FlexVC 8/4VCs

0.6

0.65

0.7

0.75

0.8

0.85

0.9

A
cc

ep
te

d
lo

ad
(p

hi
ts

/n
od

e/
cy

cl
e)

0.96

1.04

1.12

1.2

64/256 128/512 192/768 256/1024

Im
pr

ov
em

en
t o

ve
r

B
as

el
in

e

Buffer capacity in phits per port (local/global ports)

(a) UN with MIN routing.

0.45

0.5

0.55

0.6

0.65

0.7

0.96

1.04

1.12

1.2

64/256 128/512 192/768 256/1024

Buffer capacity in phits per port (local/global ports)

(b) BURSTY-UN with MIN routing.

0.35

0.4

0.45

0.5

0.96

1

1.04

1.08

1.12

128/512 192/768 256/1024

Buffer capacity in phits per port (local/global ports)

(c) ADV with VAL routing.

Fig. 6: Absolute and relative maximum throughput under uniform (UN), burst uniform (BURSTY-UN) and adversarial traffic (ADV), with
oblivious routing: MIN for UN/BURSTY-UN and VAL for ADV.

in Figure 7a is not sorted by the overall amount of VCs,
but by the amount of VCs in the request subpath (which
are assigned the same line marker): The three FlexVC con-
figurations with 2/1 VCs in the request subpath are in the
bottom, two configurations with 3/2 are in the middle, and the
best configuration employs 4/3 VCs for requests. While only
2/1 VCs are required in each subpath for MIN routing, the
allocation of additional VCs at the start of the request subpath
makes them available for both requests and replies, making a
more efficient use of them.

BURSTY-UN does not present congestion except with the
DAMQ implementation (and with a much smaller impact). Re-

sults are similar to those in Figure 5b, although the difference
in latency between implementations is less significant here.
FlexVC with 4/2 overall VCs is slightly better than the baseline
and the DAMQ. Interestingly, the number of VCs employed in
the request subpath has a bigger impact than the total number
of VCs: the three configurations with 2/1 VCs for requests are
at the bottom, and any of the other combinations (which assign
3/2 or 4/3 VCs to the requests) perform noticeably better.

Conclusion: FlexVC mitigates the congestion that occurs
with long request-reply paths, increasing throughput between
3% (ADV traffic) and 24.6% (UN) with the same buffers
and up to 51.8% by exploiting more resources. In such

150

200

250

300

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

Baseline
DAMQ

FlexVC 4/2VCs(2/1+2/1)
FlexVC 5/3VCs(2/1+3/2)
FlexVC 5/3VCs(3/2+2/1)
FlexVC 6/4VCs(2/1+4/3)
FlexVC 6/4VCs(3/2+3/2)
FlexVC 6/4VCs(4/3+2/1)

0.5

0.6

0.7

0.8

0.9

 0.5 0.6 0.7 0.8 0.9 1A
cc

ep
te

d
lo

ad
 (

ph
its

/n
od

e/
cy

cl
e)

Offered load (phits/node/cycle)

(a) UN with MIN routing.

150

200

250

300

350

400

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.40

0.45

0.50

0.55

0.60

0.65

0.70

 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered load (phits/node/cycle)

(b) BURSTY-UN with MIN routing.

260

280

300

320

340

360

380

400

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Baseline
DAMQ

FlexVC 8/4VCs(4/2+4/2)
FlexVC 10/6VCs(5/3+5/3)
FlexVC 10/6VCs(6/4+4/2)

0.40

0.42

0.44

0.46

0.48

0.50

 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered load (phits/node/cycle)

(c) ADV with VAL routing.

Fig. 7: Latency and throughput under uniform (UN), uniform with bursts (BURSTY-UN) and adversarial (ADV) traffic, modeling request-
reply dependencies. Oblivious routing (MIN for UN and BURSTY-UN, and VAL for ADV). FlexVC configurations with the same amount
of request VCs are assigned the same marker. BURSTY-UN curves share the same legend as UN curves.

configurations, it is more efficient to add additional VCs at
the begin of the request subpath than allowing longer safe
paths in both requests and replies.

C. Adaptive routing

Figure 8 presents results of source adaptive routing using
Piggyback (PB) with request-reply traffic and the -per-port
and -per-VC variants. Results of in-transit adaptive routing are
omitted for brevity. Base configurations require 4/2+4/2=8/4
VCs, while FlexVC variants employ 6/3 VCs arranged as
4/2+2/1, according to the findings in Section III-C.

The impact of using PB-per-port or PB-per-VC, without
FlexVC, is analyzed first. Figure 8a shows that PB presents
some congestion under UN traffic, and Figure 8c reveals that
per-port sensing performs worse than per-VC sensing under
ADV traffic, as discussed in Section III-D. As discussed in
Section III-D, per-VC implicitly identifies the traffic pattern
by analysing the amount of traffic routed minimally.

Under UN traffic, all the four variants of FlexVC clearly
outperform the baseline PB, avoiding congestion providing up
to 20.4% saturation throughput increase and reduced latency.
However, the two variants of FlexVC without differentiated
credit tracking perform worse than the base VC management
under ADV traffic, providing higher base latency and reduced
throughput. In such case, only FlexVC-minCred using per-port
sensing is competitive with the baseline. With FlexVC different
flows employ a common set of VCs, so FlexVC-minCred with
per-VC sensing provides less accuracy and lower throughput.

Conclusion: PB with FlexVC-minCred provides a 20.4%
throughput increase and noticeable latency reductions with a
25% VC reduction, employing additional credit counters to
properly identify traffic patterns.

VI. IMPLEMENTATION DISCUSSION

A. VC selection function

Previous results employ a JSQ (Join the Shortest Queue)
VC selection function. Our experiments show that the function
used has no appreciable impact in not request-reply traffic as
evaluated in Sections V-A and V-C. Figure 9 presents results
of request-reply UN traffic under maximum load and MIN
routing, similar to the results in Figure 7a.

As discussed in Section V-B, the amount of VCs in the
request sub-path is the factor that most determines perfor-
mance; the VC selection function has a small impact. For each
configuration, JSQ provides the best performance on average,
since it balances the utilization of all VCs, being closely
followed by highest-VC. Interestingly, a Random policy is also
competitive in many configurations. Lowest-VC consistently
provides the lowest performance. Lowest-VC tends to saturate
lower-index VCs, more used in the first hops of requests, what
eventually restricts injection. A side effect of this restriction
(not observed in this figure) is that Lowest-VC also presents
lower peak throughput. In any case, the difference between
policies under maximum load varies less than 3.4% in average.

Conclusion: The VC selection function has small impact
on performance. The best policies are JSQ and highest-VC.

B. Cost and complexity of FIFO and DAMQ

Amount of memory FIFO buffers are typically imple-
mented through circular buffers using SRAM [26]. DAMQs
also rely on SRAM to store data, but need to store pointers
for linked lists [4] or alternative control structures (discussed
in Section VII). Buffer overhead for DAMQs is small but not
negligible. For a 4KB DAMQ with 8-byte phits (512 phits
per DAMQ), pointers need to be 9 bits long and the overhead

MIN/VAL

PB - per VC
PB - per port

PB FlexVC - per VC
PB FlexVC - per port

PB FlexVC - per VC min
PB FlexVC - per port min

150

200

250

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy
 (

cy
cl

es
)

0.50

0.60

0.70

0.80

 0.5 0.6 0.7 0.8 0.9 1A
cc

ep
te

d
lo

ad
 (

ph
its

/n
od

e/
cy

cl
e)

(a) Uniform (UN).

150

200

250

300

350

400

 0.1 0.2 0.3 0.4 0.5 0.6

0.40

0.50

0.60

0.70

 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered load (phits/node/cycle)

(b) Uniform with bursts (BURSTY-UN).

250

300

350

400

450

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.40

0.45

0.50

 0.4 0.5 0.6 0.7 0.8 0.9 1

Offered load (phits/node/cycle)

(c) Adversarial (ADV).

Fig. 8: Latency and throughput under request-reply traffic, using Piggyback source adaptive routing. MIN and VAL are the reference for
UN/BURSTY-UN and ADV, respectively. 4/2+4/2 VCs are used in baseline PB and VAL, 4/2+2/1 in FlexVC PB and 2/1+2/1 in MIN.

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Baseline
DAMQ 128/512 75%

FlexVC JSQ
FlexVC Highest-VC

FlexVC Lowest-VC
FlexVC Random

 4/2
(2/1+2/1)

 5/3
(2/1+3/2)

 5/3
(3/2+2/1)

 6/4
(2/1+4/3)

 6/4
(3/2+3/2)

 6/4
(4/3+2/1)

Fig. 9: Throughput under UN request-reply traffic at 100% load, with
multiple VC selection functions and amount of VCs. MIN routing.

is roughly 576 bytes (14% increase). Considering per-packet
pointers (as in [27]) with 8-phit packets, this overhead shrinks
to 1.6%, but flexibility with variable packet size is reduced.

Access latency The indirections required in DAMQs in-
crease access latency. The implementation in [28] adds three
cycles to read or write access latency. Choi et al. measure
in [27] slowdowns in packet access time ranging 59-77%
for different DAMQ implementations. Note that no DAMQ
slowdown has been considered in our simulations, presenting
optimistic results for DAMQs.

Flow control Credit management in DAMQs is more
complex than using FIFOs because senders need to track
both per-port and per-VC occupancy, particularly when us-
ing reservations per VC and adaptive routing. FlexVC with
oblivious routing relies on the original and simpler per-VC
credit management. FlexVC-minCred increases the number of
counters, being closer to DAMQs.

Router complexity The complexity and latency of

(de)muxers and allocators grows with the number of buffers
(shared or individual) implemented per port. While more
buffers are useful to avoid HoLB, they make these elements
more complex. FlexVC can exploit buffers which would be
required anyhow for deadlock avoidance when using long
paths, so in practice it does not need to increase the number of
buffers. FlexVC requires a VC selection function. Results in
Section VI-A show that JSQ is typically the most performant.
Such function can be easily implemented with a stage of
comparators which select the VC with the highest credit count.

Conclusion: The implementation of FlexVC is simpler than
DAMQs, considering both the buffer organization and latency,
and the complexity of the other elements of the router.

C. Impact of reserved space in DAMQs

Figure 10 portrays throughput achieved with DAMQ buffers
under UN traffic, varying the private buffer size per VC. The
system employs MIN routing, 1 global VC and 2 local VCs,
with 512 phits in global ports and 128 phits shared among the
VCs in local ports. Each line represents a different amount of
reserved private buffering per VC, in packets; since packets are
8 phits, possible values range from 0 (all the DAMQ buffer
is shared) to 8 (equivalent to statically partitioned buffers: 64
phits are private per VC, no shared buffering).

With no private reservation (0 private phits), the system
presents deadlock: when V C0 is assigned all the memory
in several ports, packets cannot advance to V C1 in the next
buffer, creating a cyclic dependency between VCs. Deadlock is
only observed at saturation loads but may occur for any traffic
load. With 16 private phits per local port (25% of the overall
space is private) we observe congestion. An analysis of the
simulation data shows that most of the buffering space is again

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1A
cc

ep
te

d
lo

ad
 (

ph
its

/(
no

de
*c

yc
le

))

Offered load (phits/(node*cycle))

Reserved
Local

Queue
(in phits)
0 (0%)

8 (25%)
16 (50%)
24 (75%)

32 (100%)

Fig. 10: Throughput under UN traffic with MIN routing, using
DAMQ buffers with different buffer reservation per VC.

dynamically assigned to V C0, not leaving enough amount of
buffer in V C1 to cover link round trip time. The optimal
result is obtained with 75% of private buffering, which is only
slightly better than statically partitioned buffers, as already
observed in Figure 6a. Analogous tests were conducted with
other buffer sizes, obtaining in all cases the best performance
with around 75% of the overall space being private.

Conclusion: DAMQ buffers require most memory private
per VC to avoid congestion with distance-based deadlock
avoidance, what reduces their effectiveness.

D. Impact of router speedup

Evaluations from Section V-A have been repeated using
routers without speedup. Latency and throughput results are
omitted for brevity. Maximum throughput for different buffer
sizes is presented in Figure 11. Base throughput is significantly
lower without speedup because of HoLB. DAMQs show little
benefit from the base case with fixed-order VC management
under uniform patterns, and its use is detrimental under ADV
for every configuration. Under ADV traffic the impact of buffer
organization with the same number of buffers is very low, less
than 3%. Doubling the size of the VC set yields a higher
improvement of more than 7%. Under both uniform patterns,
FlexVC performs consistently better than the baseline and
the DAMQ. FlexVC with the same number of VCs improves
throughput less than 7.2%. Increasing the number of VCs
targets the main problem (HoLB) and improves throughput
up to 37.8% from the base case.

Conclusion: FlexVC is more efficient in systems without
speedup because they suffer more HoLB, presenting through-
put increases up to 37.8% with the same buffer space.

E. FlexVC with other topologies

This paper only evaluates FlexVC in a Dragonfly topology,
which has link-type restrictions as discussed in Sections II
and III-C. Because of such restrictions, Dragonflies only
require a maximum of 2 VCs for MIN routing. This equals
the requirement for diameter-2 networks, such as Slim Flies
or demi-Proyective Networks which do not have any link-type
restrictions. FlexVC buffer requirements for such networks has
been already considered in Tables I and II. For FB’s two
alternatives exist: DOR routing without buffer requirements for

deadlock-freedom, or adaptive routing with the base distance-
based deadlock-avoidance. In the latter case, it requires as
many VCs as the number of dimensions; FlexVC can be used
to improve performance similarly to the results presented.

The applicability of FlexVC-minCred to support nonmin-
imal adaptive routing in alternative topologies has not been
explored yet, and is left for future work.

VII. RELATED WORK

Distance-based deadlock avoidance: Seminal works on
distance-based deadlock avoidance in store-and-forward net-
works were introduced by Günther [1] and Gopal [29]. Several
current systems employ such mechanisms (or a variation of
them), such as IBM PERCS [30] or Cray Cascade [3], and
have been extended to commodity InfiniBand [31]. In these
proposals, the amount of required VCs increases with the max-
imum path length. Therefore, supporting nonminimal paths,
in-transit adaptive routing and avoiding protocol deadlock
significantly increases buffer requirements.

Opportunistic Local Misrouting (OLM, [32]) violates the
base order of increasing VC index only for certain local hops
in Dragonflies. However, it does not fully exploit the available
VCs to reduce HoLB, does not consider protocol-deadlock and
is not exploited to simplify buffer management.

Alternative routing mechanisms: Distance-based deadlock
avoidance allows to deal separately with deadlock avoidance
and routing. However, this mechanism is not supported in all
network technologies. For example, Infiniband switches select
the output VC (denoted Virtual Lane, VL) based on the input
and output ports and the packet service level (which does
not change during the path). For this reason, most routing
mechanisms in Infiniband (such as LASH [33], SSSP [34]
and DF-SSSP [35]) assign a single VC to a complete path
from source to destination. These routing protocols typically
calculate sets of paths with a reduced amount of cyclic
dependencies, so that the VL assignment phase result fits in a
low amount of VLs. NUE routing [36] provides better results
by combining path computing and VL assignment in a single
calculation, but still assigns VLs to complete paths. Schneider
et al extend distance-based deadlock avoidance to Infiniband
in [31], but still determine a single fixed output VC per packet.

Avoiding Protocol deadlock: The typical mechanism em-
ployed to avoid protocol deadlock in lossless networks relies
on two virtual networks, one for requests and other for replies
(e.g., as implemented in Alpha 21364). This doubles the
buffering requirements. In [37] the authors introduce a bubble-
based deadlock avoidance protocol for on-chip networks which
does not employ separate networks. Instead, their mechanism
shares router buffers but employs a separate bubble for each
type of message. Similarly, our FlexVC proposal avoids a strict
separation in different virtual networks, but making sure that
replies have exclusive buffers to avoid deadlock.

Buffer sizing and organization: Buffers need to cover the
link round-trip latency to permit lossless flow control. This
is the minimum size per VC considered in our simulations.
However, larger buffers are typically implemented to properly

Baseline DAMQ 75% FlexVC 2/1VCs FlexVC 4/2VCs FlexVC 8/4VCs

0.5

0.55

0.6

0.65

0.7

0.75

0.8
A

cc
ep

te
d

lo
ad

(p
hi

ts
/n

od
e/

cy
cl

e)

0.96

1.04

1.12

1.2

1.28

1.36

64/256 128/512 192/768 256/1024

Im
pr

ov
em

en
t o

ve
r

B
as

el
in

e

Buffer capacity in phits per port (local/global ports)

(a) UN with MIN routing.

0.4

0.45

0.5

0.55

0.6

0.65

0.96

1.04

1.12

1.2

1.28

64/256 128/512 192/768 256/1024

Buffer capacity in phits per port (local/global ports)

(b) BURSTY-UN with MIN routing.

0.36

0.37

0.38

0.39

0.4

0.41

0.96

1

1.04

1.08

128/512 192/768 256/1024

Buffer capacity in phits per port (local/global ports)

(c) ADV with VAL routing.

Fig. 11: Absolute and relative maximum throughput figures under uniform, burst uniform and adversarial traffic patterns without router
speedup, using oblivious routing (MIN in the case of UN/BURSTY-UN, VAL under ADV traffic).

deal with congestion bursts of traffic. Yébenes et al. [38]
reduce HoLB in Dragonflies by implementing multiple buffers
per VC; however, this multiplies the complexity and buffer
requirements, whereas our proposal allows to exploit the
buffers which would be already available for longer paths.

Dynamically allocated shared buffer implementations
(DAMQ [4]) employ a single memory shared between the
different VCs of a port. This improves performance by sharing
the complete amount of buffering on demand and better
tolerating micro-bursts of traffic. Different designs for dynam-
ically shared buffers include linked-lists [4], self-compacting
buffers [39] or Fully-connected circular buffers [40]. Alterna-
tive designs allow for a variable number of VCs, what helps
reduce HoLB particularly under adaptive routing [27], [41].

These dynamically allocated buffers present two main draw-
backs. First, implementations are more complex, leading to
an increase in area, power and delay. Second, dynamically
shared buffers suffer congestion when a single VC occu-
pies the complete buffer space, as studied in Section VI-C.
Different implementations with reserved space per VC have
been presented in [42], [43]. In particular, DAMQ buffers
with reserved space per VC are employed in the Tianhe-2
network switch [20]. Alternative approaches suggest to extend
flow-control to detect such congestion and regulate buffer
usage [44], [45], but increase buffer complexity even further.

VIII. CONCLUSIONS

This work has identified some of the main limitations of
distance-based deadlock avoidance in low-diameter networks,
mainly HoLB and inefficient utilization of router buffers.
DAMQ buffers increase design complexity and only partially
mitigate the previous limitations. By contrast, FlexVC relies
on a simple design with statically partitioned buffers and on
opportunistic routing, relaxing VC usage restrictions. FlexVC
partially decouples the amount of VCs from deadlock avoid-

ance, allowing for longer network paths with a low amount of
resources, with up to 50% memory reductions.

Evaluations in a Dragonfly network show FlexVC improves
throughput 12% compared to a base oblivious case with
the same buffering, and reduces latency under traffic bursts.
Furthermore, FlexVC leverages additional VCs typically pro-
visioned to support VAL routing, reaching 23% improvements.
Without router speedup, this figure rises up to 37.8%. Increas-
ing the amount of VCs mitigates the congestion that appears
with long oblivious paths used to avoid protocol deadlock.

However, reusing VCs for packets in different hops
of their paths complicates the identification of adversar-
ial traffic patterns for adaptive routing decisions. FlexVC-
minCred handles credits separately for packets traveling min-
imally/nonminimally, properly identifying the communication
pattern for adaptive routing and outperforming alternative
designs. With 25% buffer reduction, this mechanism provides
a 20.4% throughput increase and noticeable latency reductions
over the base PB implementation. Overall, FlexVC is a simple
design that maximizes buffer utilization and outperforms state-
of-the-art and more complex alternatives.

ACKNOWLEDGMENT

This work has been supported by the Spanish Government
(grant SEV2015-0493 of the Severo Ochoa Program), the
Spanish Ministry of Economy, Industry and Competitiveness
(contracts TIN2015-65316), the Spanish Research Agency
(AEI/FEDER, UE - TIN2016-76635-C2-2-R), the Spanish
Ministry of Education (FPU grant FPU13/00337), the Gen-
eralitat de Catalunya (contracts 2014-SGR-1051 and 2014-
SGR-1272), the European Union FP7 programme (RoMoL
ERC Advanced Grant GA 321253), the European HiPEAC
Network of Excellence and the European Union’s Horizon
2020 research and innovation programme (Mont-Blanc project
under grant agreement No 671697).

REFERENCES

[1] K. Günther, “Prevention of deadlocks in packet-switched data transport
systems,” Communications, IEEE Transactions on, vol. 29, no. 4, pp.
512 – 524, apr 1981.

[2] L. Valiant, “A scheme for fast parallel communication,” SIAM journal
on computing, vol. 11, p. 350, 1982.

[3] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson,
T. Johnson, J. Kopnick, M. Higgins, and J. Reinhard, “Cray Cascade: a
scalable HPC system based on a Dragonfly network,” in Intl Conf High
Performance Computing, Networking, Storage and Analysis, 2012.

[4] Y. Tamir and G. L. Frazier, “Dynamically-allocated multi-queue buffers
for VLSI communication switches,” IEEE Trans. Comput., vol. 41, no. 6,
pp. 725–737, Jun. 1992.

[5] J. Kim, W. J. Dally, and D. Abts, “Flattened butterfly: a cost-efficient
topology for high-radix networks,” in International Symposium on
Computer Architecture. ACM, 2007, pp. 126–137.

[6] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber,
“HyperX: Topology, routing, and packaging of efficient large-scale
networks,” in Intl. Conf. on High Performance Computing Networking,
Storage and Analysis. ACM, 2009, pp. 41:1–41:11.

[7] J. Kim, W. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” in International Symposium on Computer
Architecture. IEEE Computer Society, 2008, pp. 77–88.

[8] C. Camarero, C. Martı́nez, E. Vallejo, and R. Beivide, “Projective
networks: Topologies for large parallel computer systems,” IEEE Trans-
actions on Parallel and Distributed Systems (To appear), 2017.

[9] M. Besta and T. Hoefler, “Slim Fly: A cost effective low-diameter net-
work topology,” in Int. Conf. High Performance Computing, Networking,
Storage and Analysis. Piscataway, NJ, USA: IEEE Press, 2014, pp.
348–359.

[10] M. Valerio, L. E. Moser, and P. M. Melliar-Smith, “Using fat-trees to
maximize the number of processors in a massively parallel computer,”
in Intl Conf on Parallel and Distributed Systems, 1993, pp. 128–134.

[11] G. Kathareios, C. Minkenberg, B. Prisacari, G. Rodriguez, and T. Hoe-
fler, “Cost-effective diameter-two topologies: Analysis and evaluation,”
in Intl Conf High Performance Computing, Networking, Storage and
Analysis, New York, NY, USA, 2015, pp. 36:1–36:11.

[12] A. Singh, “Load-balanced routing in interconnection networks,” Ph.D.
dissertation, 2005.

[13] N. Jiang, J. Kim, and W. J. Dally, “Indirect adaptive routing on
large scale interconnection networks,” in International Symposium on
Computer Architecture, 2009.

[14] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2003.

[15] B. Prisacari, G. Rodriguez, M. Garcia, E. Vallejo, R. Beivide, and
C. Minkenberg, “Performance implications of remote-only load balanc-
ing under adversarial traffic in dragonflies,” in Workshop on Interconnec-
tion Network Architecture: On-Chip, Multi-Chip (INA-OCMC), 2014.

[16] J. Won, G. Kim, J. Kim, T. Jiang, M. Parker, and S. Scott, “Overcoming
far-end congestion in large-scale networks,” in Intl Symposium on High
Performance Computer Architecture (HPCA), Feb 2015, pp. 415–427.

[17] M. Garcı́a, E. Vallejo, R. Beivide, M. Odriozola, C. Camarero,
M. Valero, G. Rodrı́guez, J. Labarta, and C. Minkenberg, “On-the-
fly adaptive routing in high-radix hierarchical networks,” in The 41st
International Conference on Parallel Processing (ICPP), 09 2012.

[18] S. Scott, D. Abts, J. Kim, and W. J. Dally, “The BlackWidow high-
radix Clos network,” in Intl Symposium on Computer Architecture.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 16–28.

[19] N. Chrysos, C. Minkenberg, M. Rudquist, C. Basso, and B. Vanderpool,
“SCOC: High-radix switches made of bufferless clos networks,” in Intl
Symp. on High Performance Computer Architecture, 2015, pp. 402–414.

[20] X.-K. Liao, Z.-B. Pang, K.-F. Wang, Y.-T. Lu, M. Xie, J. Xia, D.-Z.
Dong, and G. Suo, “High performance interconnect network for tianhe
system,” Journal of Computer Science and Technology, vol. 30, no. 2,
pp. 259–272, 2015.

[21] J. Duato, “A necessary and sufficient condition for deadlock-free routing
in cut-through and store-and-forward networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 7, no. 8, pp. 841–854, Aug 1996.

[22] Y. Ho Song and T. M. Pinkston, “A progressive approach to handling
message-dependent deadlock in parallel computer systems,” IEEE Trans.
Parallel Distrib. Syst., vol. 14, no. 3, pp. 259–275, Mar. 2003.

[23] M. Garcı́a, P. Fuentes, M. Odriozola, E. Vallejo, and R. Beivide. (2014)
FOGSim Interconnection Network Simulator. University of Cantabria.
[Online]. Available: http://fuentesp.github.io/fogsim/

[24] A. Adas, “Traffic models in broadband networks,” IEEE Communica-
tions Magazine, vol. 35, no. 7, pp. 82–89, Jul 1997.

[25] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding
data center traffic characteristics,” SIGCOMM Comput. Commun. Rev.,
vol. 40, no. 1, pp. 92–99, Jan. 2010.

[26] Texas Instruments, FIFO Architecture, Functions, and Applications,
1999.

[27] Y. Choi and T. M. Pinkston, “Evaluation of queue designs for true fully
adaptive routers,” J. Parallel Distrib. Comput., vol. 64, no. 5, pp. 606–
616, May 2004.

[28] G. L. Frazier and Y. Tamir, “The design and implementation of a
multiqueue buffer for vlsi communication switches,” in Intl Conference
on Computer Design, Oct 1989, pp. 466–471.

[29] I. S. Gopal, “Interconnection networks for high-performance parallel
computers,” I. D. Scherson and A. S. Youssef, Eds. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1994, ch. Prevention of Store-and-
forward Deadlock in Computer Networks, pp. 338–344.

[30] B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel, B. Drerup,
T. Hoefler, J. Joyner, J. Lewis, J. Li et al., “The PERCS high-
performance interconnect,” in 18th Symposium on High Performance
Interconnects. IEEE, 2010, pp. 75–82.

[31] T. Schneider, O. Bibartiu, and T. Hoefler, “Ensuring deadlock-freedom
in low-diameter InfiniBand networks,” in IEEE Hot Interconnects, 2016.

[32] M. Garcı́a, E. Vallejo, R. Beivide, M. Odriozola, and M. Valero,
“Efficient routing mechanisms for dragonfly networks,” in The 42nd
International Conference on Parallel Processing (ICPP), 10 2013.

[33] T. Skeie, O. Lysne, and I. Theiss, “Layered shortest path (LASH) routing
in irregular system area networks,” in Intl Parallel and Distributed
Processing Symposium, Washington, DC, USA, 2002, pp. 194–.

[34] T. Hoefler, T. Schneider, and A. Lumsdaine, “Optimized routing for
large-scale InfiniBand networks,” in 2009 17th IEEE Symposium on
High Performance Interconnects, Aug 2009, pp. 103–111.

[35] J. Domke, T. Hoefler, and W. E. Nagel, “Deadlock-free oblivious routing
for arbitrary topologies,” in Parallel Distributed Processing Symposium
(IPDPS), 2011 IEEE International, May 2011, pp. 616–627.

[36] J. Domke, T. Hoefler, and S. Matsuoka, “Routing on the Dependency
Graph: A New Approach to Deadlock-Free High-Performance Routing,”
in Symposium on High-Performance Parallel and Distributed Computing
(HPDC’16), Jun. 2016.

[37] R. Wang, L. Chen, and T. M. Pinkston, “Bubble coloring: Avoiding
routing- and protocol-induced deadlocks with minimal virtual channel
requirement,” in International Conference on Supercomputing, 2013, pp.
193–202.

[38] P. Yébenes, J. Escudero-Sahuquillo, P. J. Garcı́a, and F. J. Quiles,
“Straightforward solutions to reduce HoL blocking in different Drag-
onfly fully-connected interconnection patterns,” The Journal of Super-
computing, pp. 1–23, 2016.

[39] J. Park, B. O’Krafka, S. Vassiliadis, and J. Delgado-Frias, “Design and
evaluation of a DAMQ multiprocessor network with self-compacting
buffers,” in Supercomputing ’94., Proceedings, Nov 1994, pp. 713–722.

[40] N. Ni, M. Pirvu, and L. Bhuyan, “Circular buffered switch design
with wormhole routing and virtual channels,” in Intl Conf on Computer
Design, Oct 1998, pp. 466–473.

[41] C. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M. Yousif, and
C. Das, “ViChaR: A dynamic virtual channel regulator for network-on-
chip routers,” in Intl Symp. on Microarchitecture, 2006, pp. 333–346.

[42] J. Liu and J. G. Delgado-Frias, “A shared self-compacting buffer for
network-on-chip systems,” in 2006 49th IEEE International Midwest
Symposium on Circuits and Systems, vol. 2, Aug 2006, pp. 26–30.

[43] H. Zhang, K. Wang, J. Zhang, N. Wu, and Y. Dai, “A fast and fair
shared buffer for high-radix router,” Journal of Circuits, Systems and
Computers, vol. 23, no. 01, p. 1450012, 2014.

[44] D. U. Becker, “Adaptive backpressure: Efficient buffer management for
on-chip networks,” in Intl Conf. on Computer Design. Washington,
DC, USA: IEEE Computer Society, 2012, pp. 419–426.

[45] H. Zhang, K. Wang, Z. Pang, L. Xiao, Q. Dou, and Y. Yuan, “An
area-efficient DAMQ buffer with congestion control support,” Journal
of Circuits, Systems and Computers, vol. 25, no. 10, p. 1650125, 2016.

http://fuentesp.github.io/fogsim/

	Introduction
	Background
	FlexVC mechanism
	Base FlexVC
	FlexVC considering protocol deadlock
	Networks with routing or link-type restrictions
	FlexVC-minCred and congestion sensing for nonminimal adaptive routing

	Evaluation infrastructure
	Routing mechanisms and buffering
	Traffic patterns

	Results
	Oblivious routing
	Request-reply traffic
	Adaptive routing

	Implementation Discussion
	VC selection function
	Cost and complexity of FIFO and DAMQ
	Impact of reserved space in DAMQs
	Impact of router speedup
	FlexVC with other topologies

	Related work
	Conclusions
	References

